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Abstract: 
The introduction of the notion of chaos – derived from the chaos theory as developed in 
mathematical and physics sciences – into the study of socio-political phenomena allows 
us to better understand the dynamic evolution of these non-linear systems. This paper 
intends to review the still embryonic literature regarding the application of the chaos 
theory in political science, particularly into the fields of public policies and international 
relations. The modelling and prediction attempts made using non-linear tools (such as 
the mathematical transformations, the fractal objects and other graphic and quantitative 
methods applicable to the specificities of the socio-political data) reveal the original 
asset of the chaos for social sciences. Using examples and cases studies, this paper 
attempts to develop and shows the pertinence of these original concepts (such as the 
bifurcations, the strange attractors, or the sensitivity to initial conditions) as well as the 
analysis and prediction tools associated to them in order to apprehend and understand 
political phenomena whose behaviour seem to be, at first sight, random or at least 
unpredictable. 
 
 
1. The Breaking-up of the Newtonian Paradigm 
 
Classical positivist model, which truly and largely permitted the advance of modern 
scientific knowledge, is somehow out-dated. This deterministic-like paradigm which 
run during the 18th and 19th centuries, not only based on the work of Newton but also of 
other distinguished scientist such as Leibniz, Euler or Lagrange as well as on the 
philosophical inquiries by Descartes or Comte, strongly supports what has been named 
as paradigm of order (Geyer, 2003). It is founded on four main principles, as follows: 
order, reductionism, predictability and determinism. By order, one may understand that, 
the given causes will lead to the same known effects. Reductionism implies that the 
behaviour of the system can be explained by the sum of the behaviours of the parts. On 
the other hand, this kind of system is predictable in the sense that, once its global 
behaviour is defined, events in the future can be determined by introducing the correct 
inputs into the model. Finally, determinism implies that the process flows along orderly 
and predictable paths that have clear beginnings and rational ends. This way of 
understanding behaviour of natural (and social systems) could be summarized with the 
following quote of Laplace (1951): 
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“We may regard the present state of the universe as the effect of its 
past and the cause of its future. An intellect which at a certain 
moment would know all forces that set nature in motion, and all 
positions of all items of which nature is composed, if this intellect 
were also vast enough to submit these data to analysis, it would 
embrace in a single formula the movements of the greatest bodies of 
the universe and those of the tiniest atom; for such an intellect 
nothing would be uncertain and the future just like the past would be 
present before its eyes”. 

 
Nevertheless, this scientific Weltanschauung, describing a mechanistic world defined by 
differential equations, was progressively confronted to more and more complex natural 
phenomena which clearly escaped from these linear descriptions of the reality. All in 
all, it finally conducted to the assumption of the uncertainty, nonlinearity and 
unpredictability of natural realm (Krasner, 1990). For instance, whereas the standing 
paradigm assumed a linear point of view, where causes and effects are always related by 
proportional laws of behaviour, the new approach over the same old phenomena showed 
that there was no proportionality between causes and consequences, that is, small causes 
could produce, in a punctual moment, large consequences. But the most interesting 
point was, as Poincaré quickly noted, that these complex behaviours – that was not 
actually unknown by Newtonian paradigm, but just got around by means of 
linearization methods – could also be an output from a set of linear interacting 
equations. Although it was a real strike on the foundations of the Newtonian paradigm, 
some other crucial discoveries in mathematics and physics such as quantum physics or 
relativity theory placed in a second and discrete row all these important progress in non-
linear dynamic systems (Capra, 1996). 
 
2. Chaos and Randomness 
 
Chaos is undoubtedly a confusing term. On the one hand, chaos belongs to the 
mythological heritage of many different ancient cultures, almost as a cultural universal, 
whereas on the other hand it refers to a very particular research program in the study of 
the temporal evolution of nonlinear deterministic systems. 
 
Despite its etymological Greek origin (χάος), the notion of chaos appears in many 
different ancient narrations about the origins of the World. Thus, while in Egypt nut was 
the formless universe which gives rise to râ, the Sun God, in China dragons emerged 
from one homogeneous and uniform space, imposing the order yang to the four corners 
of the matter yin (Herman, 1994). The same narration appears also in the brahamanic 
legacy and of course, in the Greek cosmology where chaos is an a-historical state where 
time comes from. As a result of all that, there is still nowadays a tendency, revealed in 
our colloquial language, which associates the notion of chaos to disorder, turbulence, 
anarchy and confusion. These interpretations of chaos could be easily associated to 
random behaviour, that is a state of maximal entropy, which do not represents the 
distinctiveness of chaos in a technical sense. 
 
Actually, chaos is not randomness at all. In a random system, everything is possible. 
Given a particular point at its trajectory, the following point cannot be predicted. 
Nevertheless, it does not mean that any following state can be whatever it can ever 
hypothetically occur. Somehow it can be one among many possible states, but not one 
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among infinite. There is always a (wide) range of possible futures, but this range is 
never infinite. So, in this kind of chaotic phenomena, even if not being able to predict 
what is going to happen next, one may know that what will happen will be drawn from 
a set of alternative greater than one, but less than too many to cope with (Byrne, 1998). 
Said differently, in applied mathematics, chaos designates a deterministic complex 
behaviour, irregular and non-periodic with random appearance but maintaining a latent 
order. This is a very important assumption because it sets the chaos theory in a non-
stochastic view of the world. This being said, however, one may not completely reject 
statistical practices, because even deterministic models maintain a complete collection 
of statistical measures and require, for instance, the application of least square 
procedures (Brown, 1995). 
 
3. Phase Space and Attractors 
 
These hidden orderly patterns in chaotic behaviour can be presented in the so-called 
phase space. Phase spaces are abstract mathematical spaces, that is a set of structured 
points, normally with a high number of coordinates (each particular variable taken into 
account by the model is associated to a different coordinate), so that each point in this 
abstract space represents a complete and detailed state which the analysed system could 
eventually reach. Thus, the larger the dimension (number of coordinates) of the phase 
space, the better will be the description of a particular state reached by the system. 
Furthermore, it is important to notice that any particular state of the system is 
represented on the axes without using a separate axis for time. This way, the evolution 
of any particular system could be described by a chain of consecutive points in its phase 
space – a chain that we will call trajectory. And even a trajectory can also show a 
random behaviour, they usually follow some trend of evolution, even if it is much more 
complex and a-periodical than one could firstly imagine. In a more restrictive 
perspective, trajectories may be also interpreted as a transitory period which system 
may pass trough in order to reach another stability region (Jong, 1999). 
 
Analysing the long-term trajectory of many different nonlinear systems, just few 
different patterns of behaviour have been already revealed. Metaphorically, one may say 
that they draw just a few different shapes of trajectories. More technically speaking, one 
may argue that there are just few different topological forms describing those 
trajectories. In any case, no matter how they are presented, all these trajectories refer 
implicitly to the idea of attractor, because any trajectory of the system running on the 
long-term is somehow “attracted” by some point or some closed region within the phase 
space describing the system in question. And if it is not, the absence of this attractor 
becomes analytically relevant. And distinguishing the attractor implied in the future of 
the system is crucial because many general dynamic properties of the system can be 
deduced from the form of the attractor describing it (Capra, 1996). 
 
General speaking, there are three different categories of attractor: (1) punctual attractor, 
defined by a single point in its corresponding phase space and describing a system 
whose trajectory tends to some stable equilibrium, (2) periodical attractors, defined by 
two or more “basins of attraction” which are consecutively visited by the trajectory of 
the system and describing the pattern of a periodical oscillatory system, and lastly (3) 
strange attractors, with no pre-defined shape and implying a chaotic behaviour. 
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Even if there has been some objections to the term ‘strange attractor’, such as those by 
the Russian mathematicians Boris Chirikov and Felix Izrailev stating that a strange 
attractor seems odd, strange attractors may be defined as set of points in a concrete 
phase space consisting of an infinite number of curves, surfaces, or higher-dimensional 
manifolds (Lorenz, 1993).  
 
4. Sensitivity to Initial Conditions 
 
A chaotic behaviour is also characterized by its extreme sensitivity to initial conditions 
(Gleick, 1987). This sensitivity is somehow the most intuitive characteristic of chaotic 
systems too (Martín et al., 1995) and can be defined as follows: given a concrete point 
in the phase space of a chaotic system, one may find out another point, as close as 
possible to this initial point, and with a separation distance of ( )0xδ , from which the 
same pattern of behaviour of the system would lead the trajectory of the system to a 
final point much further from the first hypothetical final point than ( )0xδ . That is, in 
such a system, given the sensitivity to the initial conditions, the smallest perturbation of 
the systems in an initial condition may lead it to an exponentially divergent final state, 
( ) ( )[ ] nn xx λδδ 0=  (Prigogine, 1993). It basically means that the trajectories of 
neighbouring points may behave in a very differently way, approaching and moving 
away one from the other in a really unpredictable way.1 
 
This is the main reason why, even being a deterministic system, most of times there 
exist a lack of predictability in chaotic systems. Somehow they are determined but 
undeterminable; hence they are sensitive to extremely low perturbations (Herman, 
1994). Moreover, as measurements are mainly imprecise in the social sciences, irregular 
periodicity may arise from a stochastic component or from a periodic behaviour where 
the signal-to-noise ratio is high (McBurnett, 1997). As in sampling theory, the 
measurement of the difference ( )0xδ  may hence induce to some errors which 
progressively increase and which must be labelled as noise. In this way, Lorenz himself 
stated that initial conditions can be used a suitable and acceptable definition to chaos 
(Lorenz, 1993). 
 
This principle of sensitivity to initial conditions finds its parallel in comparative politics 
in the efforts to show how the formative characteristics of the structures and the 
decisions constrain subsequent processes and events (Zuckerman, 1997), since 
particular courses of action, once introduced, can be almost impossible to reverse and, 
consequently, political development is often punctuated by critical moments or 
junctures that shape the basic contours of social life (Pierson, 1992). 
 
5. Bifurcation Points 
 
It is also important to notice the explanatory importance of these critical moments, 
junctures or, more technically speaking, bifurcations points. These critical moments, 
which constantly challenge the trajectory of the system, are exactly where the sensitivity 
of the system to initial conditions is stronger and the chaotic nature of the system 
reveals itself in a more radical way, driving the system to the so-called limits of chaos 

                                                
1 Even the mathematical works in early XX century by Hadamard, Duhem and Poincaré, the most well 
known and popular example of a dynamical system sensitive to its initial conditions was proposed by the 
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(Lewin, 1992). Up to these moments, the trajectory of the system might behave in a 
quite predictable pattern, but once reached this so-called bifurcation point, the prior 
order breaks out and the system is driven by patterns of behaviour less predictable than 
ever before. The relationship between the order immediately before and immediately 
after the juncture is not simple at all (Lazlo, 1990) and, once again, it is a clear 
illustration of how determined and undeterminable a chaotic system might be. In other 
words, with nonlinear dynamic systems, the bifurcation implies a change in the 
system’s behaviour when it is changing from one attractor to a new one (Lazlo, 1990). 
Therefore, bifurcations points are extremely important to understand. Because of their 
nature, they are not just any point. The extreme sensitivity showed by the system at 
these points makes them to be notorious, transcendent and unrepeatable historical 
moments. Actually, these bifurcations points are extremely important to understand a 
posteriori the complete trajectory of any given chaotic system. 
 
Similarly to what occurred with attractors, there are also seldom different kinds of 
bifurcations, topologically classified. The first one to tackle his question was René 
Thom, who firstly announced the existence of seven different catastrophes, as he called 
this junctures in dynamical systems. Nowadays this number has enlarged until three 
times more (Capra, 1996). In any case, in the chaos theory (and more generally, in 
dynamic systems theory) any bifurcation implies a phase transition in the trajectory of a 
system which is evolving from one attractor to another (Lazlo, 1990). That is, in a 
bifurcation point a global change in behaviour arising from many changes in the many 
constituent elements of the system suddenly appears. Typically these interactions are 
short-ranged local ones, in the sense that these sudden transformations do not appear 
outside from the ( )0xδ distance we have already presented. 
 
As well as this idea of breaking up the current order and also breaking up the 
proportionality between cause and effect, bifurcation points also exhibit a second 
important and distinctive property of chaotic behaviours. In each bifurcation point, the 
trajectory of the system becomes irreversible. It means that, once abandoned the 
bifurcation point, the trajectory of the chaotic system will not visit this point in the 
phase space anymore. Strictly talking, actually, this irreversibility in chaotic systems 
only refers to a so low possibility for the trajectory of the system to visit again some 
region (or point) of its phase space that this possibility turns rapidly into a certainty.2 
Put differently, these kinds of instabilities, which can only happen in open systems 
operating far from equilibrium (Prigogine & Nicolis, 1989) permit high range of 
possibilities, but all implying a non-way back to previous equilibriums, because in 
chaotic systems, particular courses of actions, once introduced, maybe almost 
impossible to reverse (Pierson, 2000). 
 
This property of irreversibility, that is, never retracing previous points during its 
temporal evolution may be the reason of its apparent randomness (Kiel & Elliott, 1996). 
This understanding brings us back to the previous statements, in the sense that, even if 
they show a erratic appearance, chaotic systems are strongly determinate, meaning that 
“history matters” (Ortega y Gasset, 2001), ruling out every single possibility to univocal 
patterns of evolution (Herman, 1994). 
 

                                                
2 As Ruelle (1991) appropriately recognises: “Life is too short to see a layer of cold water moving up a 
warm water one”.  
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6. Measuring Order 
 
This intimate connexion between history and chaos and, more generally speaking, non-
linear systems, can be also associated to the idea of “order through fluctuations” 
(Prigogine & Stenglers, 1984). But how to make possible an objective definition, and 
above all, a particular way to measure order, which seems to be crucial in order to 
complete this approach in progress? 
 
Not every hypothetical state belonging to the evolution of a dynamic system has the 
same probability to happen. Put differently and providing a physical example to our 
understanding: when one imagines a child playing with a pencil and trying to let it 
alone, standing with no help in the middle of the desk, and even there is no physical law 
who avoids the pencil to stand alone, one may rapidly imagine the pencil laying on the 
desk after having fallen just immediately after the child left his last finger. So, even in a 
dynamic system many hypothetical states are possible, not all of them have the same 
probability to happen. 
 
We will name complexion to every single state which can be hypothetically reached by 
the system for every different event (standing in the middle of the desk could be one 
event, while laying on the desk could be another event), so that the fewer complexions 
per event, the higher rank of order. This way, we are linking the idea of order to the idea 
of a state with a lower probability to happen. 
 
Moving back to the idea of phase space – this singular abstract set of points representing 
different states reached by the analysed system – we may establish a singular 
classification among those scatterplots collecting those points which represent 
hypothetical states of the system with the same probability to happen. In spite of the 
many small differences among every single state, this classification however considers 
that all the states belonging to a same system have the same probability to happen. 
 
Given the fact that every scatterplot corresponding to a different event collects a 
different number of complexions, somehow it permits interpreting every scatterplot and 
hence, every different event, presenting a different “volume” in the phase space of the 
system. According to that, it appears hence an alternative measure of the relative order 
reached by a system. A larger number of complexions implies a larger number of states 
with the same probability to happen, that is, a bigger “volume” in the phase space of the 
system and, and therefore a higher rang of disorder because it refers to a event with 
more probabilities to happen. 
 
Due to the huge discrepancy among these “volumes” corresponding to one event or 
another, it is much better to compare them through the logarithm of the “volumes”. We 
call the measure entropy. So:  

Entropy= k· log V 
where k is a constant variable and log V, the logarithm of the value of the “volume”. 
 
Hence, while analysing the changes in the system through observing its trajectory in the 
phase space, one may argue for or against an increasing or a decreasing trend, related to 
the rank of order reached by the system. So, despite the common opinion which 
compares the idea of order to some kind of perfection or desirable state, far from any 
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value judgement, we are just proposing a likely measure of order to interpret the 
evolution of a chaotic system, like most of social systems are. 
 
7. Specific Methods 
 
The study of the chaos is in the scientific literature mainly based on a graphical 
methodology, on individual trajectories of variables.3 Some specific methods have been 
developed to analyse chaotic behaviours and some argue that at least three different 
methods should be use by the researcher in order to prove the existence or non-existence 
of the chaos in the observed systems (Bird, 1997; Stroup, 1997). Relying on a 
mathematical basis, nonlinear dynamics provide relevant useful tools like the analysis 
of the attractors (mentioned above) or the Fourier transformation. 
 
We will illustrate these two graphical methods and some of the characteristics of the 
chaos explained above thanks to a simple equation.4 First of all, the sensitivity to initial 
conditions, that is how small effects can have large consequences. Using the following 
formula:  

yt+1 = w yt (1–yt) 
we can distinguish different patterns of behaviour according to the value of the 
parameter and initial condition. Graph 1 (see Appendix) concerns values of y = 0,99 and 
w = 2,14 and the equation is iterated 50 times. The data shows a very stable pattern that 
can be defined as a constant. Graph 2 concerns values of y = 0,97 and w = 3,13 and 
shows a clear and stable periodic pattern. These first tow graphs can be labelled as 
linear systems. Finally, Graph 3 presents what we can call chaos, that is a non-periodic, 
nonlinear and random-like system. The values for y are 0,99 and for w = 3,895. This 
simple example intends to prove the existence of a ‘butterfly effect’ even for this very 
simple equation consisting of only two variables. The values for y and w are 
respectively close to each of the values in the three above examples. 
 
Second, the examination of a strange attractor (see above) is conducted by a mapping 
of the data into a phase space, that is in a t/t-1 phase space (t is plotted on the vertical 
axis while t-1 is plotted on the horizontal axis) (Kiel, 1993). Applying this method of 
phase space for our three examples, we are able to distinguish chaos from other types of 
dynamic systems. In the case of the system showing a constant, we observe in Graph 4 
that, after the very first iterations, the system stabilises on one single point (X axis, 
value = 0,5327 and Y axis, value = 0,5327). This type attractor is called punctual 
attractor (see above). The observation of the phase space of the periodic system shows 
also a very clear pattern (Graph 5). In this case, the attractor turns around two quasi 
constant values, representing the periodicity of the system. This attractor is called 
periodical attractor (see above). Finally, in the case of the chaotic system, the attractor 
presents a very different face as shown in Graph 6. The pattern in this case looks quite 
complex, but not purely random. As a matter of fact, we can observe in this strange 
attractor some kinds of regularities because the system does not ‘explode’ in extreme 
variables or show an erratic behaviour. Thanks to this graphical tool, we can distinguish 

                                                
3 Even though, some authors (Sinaï, 1992 ; Dahan; Chabert & Chemla, 1992 ; Prigogine, 1993) state that 
the most fundamental and pertinent level of analysis of the chaos relies on the probabilities and advice to 
use a combination of both probabilistic and graphical analysis of the chaotic phenomena. 
4 We are of course aware that the analysis of the chaos relies on time-series data and not on time-
independent artificially made data. We used this equation example as a way to simplify the – sometimes – 
complex behaviour of real-world time-series data. 
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chaos from other types of dynamic systems and it confirms the hypothesis of chaotic 
systems according to which we can find some kind of ‘order’ in the middle of the 
‘disorder’.  
 
Finally and in contrast with the attractors and phase space graphical approach, only few 
studies used the Fourier transform as a useful tool to observe chaos in social sciences 
(exceptions are Kiel, 1993; Brown, 1994; Dandoy, 2000). Nevertheless, it appears to 
constitute a highly valuable method to analyse chaotic phenomena (Stewart, 1992; 
Stroup, 1997). Enders and Sandler (2002) observed that a Fourier approximation to non-
linear estimates, instead of more traditional time series analysis (auto-regression 
model). The Fourier transform is also known as standard spectral analysis. Spectral 
analysis uses all possible integer frequencies in order to assess relative contribution of 
high, medium and low frequencies to the total variation.5 As a result, if the spectrum 
appears to be continuous, that is if the frequencies on long, mid and short term are 
somehow equal, it is considered as a proof of the presence of the chaos in the dynamic 
system (Bergé & Dubois, 1992). Using our above examples, we can use this Fourier 
transform to see whether or not the spectrum appears continuous and not dominated by 
short- or long-term variations. In Graph 7, we observe that the spectrum indicates high 
values on the left of the graph, meaning that the system is almost only determined and 
could be predicted on the long term. According to Graph 8, the system characterised by 
a periodic behaviour is mainly influenced by the very short-term variations of the data 
(as the highest values lay on the right of the graph). As far as Graph 9 is concerned, it 
shows a less clear pattern, as both mid- and short-term frequencies seem to play a large 
role in this case. The system analysed here is therefore not fully chaotic, as it seems to 
be poorly influenced by the long-term variation. However, unlike the two previous 
examples, we can hardly observe that one of the different frequencies dominate the 
behaviour of the whole system. As a result, even if this last example looks closer to a 
chaotic system than the two previous ones, it does not seem to be made of ‘pure chaos’.  
 
8. Chaos in the Political Science 
 
When one wants to analyse and apprehend social or political phenomena, they face a 
scientific object that is by definition far different form the natural sciences. Social and 
political scientists find out that “a high degree of unpredictability of the future is the 
essence of the human adventure” (Nicolis & Prigogine, 1989: 238). However, some 
studies and research projects have assumed, in the two last decennia 6, that chaos theory 
concept’s and tools are inherently part of the properties of the political science. These 
researches concern many different topics and issues as well as refer to different aspects 
and characteristics of the chaos7. Among the latter, we can observe studies dealing with 
sensitivity to initial conditions, bifurcations, entropy, etc. but the majority of these 
studies remain rhetorical, that is using the chaos’s vocabulary to describe political 
                                                
5 For more information about the mathematical definition and expression of the Fourier transform, see 
Dandoy (2000). 
6 Some authors consider Marx’s theory as one of the first examples of the applications of the chaos theory 
in the social sciences before its effective development and definition by natural sciences. Marx’s theories 
stated that social ‘revolutions’ (chaotic, nonlinear and dynamic) causing breakdowns in the capitalist 
bourgeoisie system of economy and society (bifurcations through possible dissipating structures) that may 
lead to a new order, a socialist system of economic and social organization with new forms of governance 
and administration (Farazmand, 2003).  
7 The work of Kiel and Elliot, Chaos Theory in the Social Sciences (1996) constitutes in this perspective 
one of the founding books for the application of the chaos theory in the social sciences. 
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behaviours and phenomena like wars, revolutions, electoral instability, or simply 
political problems that, on the first sight, look complex. 
 
The recent success of the chaos can be explained by human psychology and by a 
perception point of view. The public – via the news media – is aware of the surrounding 
disorder that frustrates its desire to feel secure and creates a more intense focus on order 
as a prime value. In other words, the public becomes more sensitive to the disorder. 
“Our fear of disorder therefore makes it inevitable that we will either find or create an 
endless supply of it” (Chernus, 1993: 108). Crises, surprises, sudden and rapid changes, 
confusions and things out of control prevail in our world and characterize modern 
organizations and every complex system. Political leaders and managers must therefore 
be prepared to deal with such chaotic phenomena and manage complex organizations 
accordingly (Farazmand, 2003). Part of the solution can be the chaos theory that can 
help us understand and manage complex problems born out of highly complex and 
dynamic systems. Chaos systems can be distinguished from two other types of systems 
and each of them can directly be associated with political science. The first type 
encompasses systems that converge to equilibrium or a steady state, like national 
sentiments that often converge to a steady equilibrium. The second type concerns 
systems that display a stable oscillating behaviour according to a repeated pattern, like 
elections cycles. The chaotic system displays an irregular oscillatory process, like 
countries that irregularly oscillate between anarchy, civil war and democracy (Peled, 
2000). 
 
9. Public Organisations, Regimes and Policies 
 
Some valuable scientific work has been published on chaos theory and its application to 
organisations and, in particular political organisations and regimes, administrative 
behaviour and public policy analysis and implementation. Organization theory has 
recently evolved to newest forms of organizational evolution characterized by 
instability, chaotic changes, system breakdowns with bifurcations into new orders, and 
negative feedbacks as well as non-equilibrium features as positive ingredients 
producing dynamism in the organisational system. In this perspective, the chaos theory 
can be fruitfully applied to improve our understanding of complex public organisations. 
The work activities of a service organisation seem to oscillate sometimes erratically and 
may, over time, appear disorderly and chaotic (Kiel, 1993). However, the management 
must maintain a dynamic equilibrium, or dynamic stability, that incorporates dynamism 
adequate for adjustment to change. Applying chaos’ theory principles, each service in 
this organisation represents a disturbance that has the potential for altering the 
behaviour and structure of the work system. Thanks to a graphical perspective of 
managed equilibrium in a government organisation, Kiel observed that system outcomes 
such as order and equilibrium, or system behaviour such as stable oscillation or chaos, 
are empirically verifiable. Using attractors, he found out that although work activities 
may appear disorderly, order might exist at the foundation of the activities. 
 
Similarly, Pelled (2000) and Farazmand (2003) observed that organizational problems, 
and more precisely, public administrations crises can no longer be solved or managed 
through traditional approaches and methods and that they require new of thinking and 
solutions, nonlinear complex models of action, and chaotic models to deal with non-
linear situations. Introducing a time perspective, what appears to be chaotic and 
disorderly on the short term at the micro level may actually contribute to the long-term 
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order and equilibrium at the macro-level. As a result, one can argue that chaos theory 
implies that organizations are capable of producing within themselves forces of 
dissipative structures most of which have self-organizing capacities that lead to new 
organizational entities and order. In other words, the chaos theory fosters ‘dissipative 
structures’ in hope of revitalizing the system from entropic decline. Organizations and 
their leadership must therefore induce periodic changes of a chaotic nature to ‘motivate’ 
the stable system for renewal and revitalization (Farazmand, 2003). More precisely, 
some government types can be labelled as chaotic, like democracy that is observed as 
inherently messy and chaotic (Pelled, 2000). Managers in organisations must foster 
democracy because it breeds disorder, instability and multiple inputs to decision 
making, qualities that are necessary in order for the organisation to change and survive 
(Kiel, 1994). Chaos or creative instability and the role of accidents now become the 
conditions upon which the pre-existence of a democratic environment where free and 
involved citizens can unleash their creativity. However, this perspective of the chaos 
theory as a tool for organisational change tends to promote deliberate chaos and 
destruction in societies (Pelled, 2000; Farazmand, 2003). In this sense, chaos theory can 
be a powerful tool of manipulation and control in the hands of few powerful elites for 
economic, social, political and military reasons. In addition, unpredictability of 
outcomes of chaotic states or systems pose further dangerous, and potentially fatal, 
threats to individuals, groups, cultures. – un-anticipated secondary or multiple 
consequences. How do we know that injecting chaotic forces into prevailing stable 
system will lead to eventual order, especially desired order? Could it cause massive 
dissipating evaporation ? 
 
As far as the analysis of public policies is concerned, Brown (1994) observed that the 
environment policy positions are oscillating due to changes of partisan control of the 
White House and two other critical outputs, the public concern for environment and the 
economic costs of environmental clean-up. The model presented suggests a high level 
of complexity and this simplified system – only four variables – shows a clear nonlinear 
behaviour. The main findings of this research concern the fact that minor parametric 
changes in the system can lead to major alterations in the output variable – that is 
environmental policy changes. In addition, the author observed that, using alternate 
parameter values, the oscillations of the whole system are still observable, but they do 
not show a clear pattern. Using the Fourier analysis of the system’s periodicity, it 
indicates a complexity very typical of chaotic systems, making any policy prediction 
impossible.  
 
10. International Relations 
 
Another ‘successful’ field of application of chaos theory’s principles concerns the 
international relations studies. In its article about peace, Chernus (1993) stated that the 
quest for order at all costs is self-defeating. It is paradoxically that states use the 
military option and the war instruments – that are by definition open doors to instability 
and uncertainty – in order to bring order and peace in our fragmented societies. The 
chaos theory is particularly useful in the field of peace research. First, the more diverse 
possibilities are actualized in a given situation, in terms of both actors’ roles and 
interactions between actors, the greater the likelihood of peace (Galtung, 1975). Peace 
will therefore occur in states with high entropy, meaning that increasing disorder, 
messiness, randomness and unpredictability will bring more peace than it could occur in 
predictable and excessive ordered countries. Second, chaos theory aims to model whole 
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systems, looking at overall patterns rather than isolating the cause-and-effect relations 
of specific parts of a system (Mesjaz, 1988). Through this approach, chaos theory has 
discovered that many social systems are not simply either orderly or disorderly. Some 
are orderly at times and disorderly at other times. Others, which are in constant chaotic 
motion, yet display an overall stability. As a result, this notion of stable chaos and 
ordered randomness points the way to a new understanding of peace. The chaos theory 
may allow us to see the nature and the society as inherently peaceful not because they 
are so orderly but, rather, because they are so laden with disorder. “Nature would 
become the model for peace not only because of its diversity and associative qualities 
but especially because of its transcendence of the distinction between order and 
disorder” (Chernus, 1993: 113). Third, similarly to the repeated patterns of ordered 
randomness at different scales, the author considers peace as an uninterrupted flow of 
ordered randomness replicated at every level of human interaction, from nuclear family 
to the nations. In other words, it takes many peaceful polities to create a peaceful 
environment, and many peaceful environments to create a peaceful global polity, every 
level of policy showing a harmonious pattern of organisation.  
 
Betts (2000) observed a useful application of chaos to strategy and international 
security. In his view, doubts about government’s capacity to cause intended effects 
through strategy are reinforced by the chaos theory, given the fact that the strategy 
results do not follow plans. The complexity and the contingency preclude controlling 
causes well enough to produce desired effects and little connection between the design 
and the denouement of strategies is observed. The author stressed that the chaos theory 
emphasizes how small and untraceable events produce major changes, referring to the 
‘butterfly effect’ characteristic. Chaos theory sees war as a nonlinear system that 
produces ‘erratic behaviour’, through disproportionate relationships between inputs and 
outputs or synergies, and in which the whole is not equal to the sum of the parts 
(Beyerchen, 1992). However, Betts conceded that chaotic nonlinearity is common in 
war strategies, but neither absolute nor pervasive. “If chaos theory meant that no 
prediction is possible, there would be no point in any analysis of the conduct of the war” 
(Betts, 2000: 20). Those who criticize social science approaches to strategy for false 
confidence in predictability cannot rest on a rejection of prediction altogether without 
negating all rationale for strategy. Finally, one should mention that the nonlinear 
perspective misrepresents the structure of the problem as the military strategy seeks 
disequilibrium, a way to defeat the enemy rather than to find a mutually acceptable 
price for exchange.  
 
More precise but still rhetorical examples of the application of the chaos theory in the 
field of the international relations can be found in the example of the spontaneous and 
mass revolutions as the Iranian revolution of 1978-79 that is considered a massive 
rupture of chaotic uncertainties and bifurcations into unpredictable dynamical changes 
in a political system (Farazmand, 2003:341), similarly to the predictions made on the 
post-Castro environment in Cuba (Radu, 2000). A single man –Hilter – was considered 
as the ‘butterfly’s wing’ that could cause the German system to bifurcate from 
democracy to totalitarism (Peled, 2000:31). Similarly, the events of September 2001 in 
the United States, the appearance of the Macedonian Alexander that ruled the Persian 
Empire are assessed as good examples of how small scale chaotic events can lead to 
large scale chaotic consequences with far reaching implications (Farazmand, 2003:353). 
But political scientists do not only use metaphors for describing political and IR 
phenomena. For example, Saperstein (1988) studied empirically whether the 
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development of SDI in the United States would lead to a transition from an offensive to 
a defensive mode of strategy from ICBM attacks. His complex model appears to be 
sensitive to noise and even chaotic. The outcomes of the system clearly show erratic 
oscillations and predict an undesired escalation of risk of strategic intercontinental 
nuclear war in the case of the development of SDI. They confirmed that, in the political 
science field, the transition from predictability to chaos in deterministic mathematical 
system is possible.  
 
11. Political Parties and Elections 
 
Using elections results, quarterly, monthly and even weekly polls, Weisberg (1998) 
observed, in a particularly original application of the chaos theory into political science, 
that the more frequent the measure, the greater change is found. The work on fractals in 
the chaos theory provides an important insight on measuring electoral change. 
According to the chaos theory, scale is important when dealing with some objects. One 
can measure more irregularities with a smaller unit of measure, and these irregularities 
add to the overall length. The fractal geometry suggests a parallel result for measuring 
change over time in political science. As a result more electoral change was found when 
measuring changes across shorter time periods. In addition, chaos theory suggests that 
nonlinear change can also be relevant in politics (Brown, 1996). The main findings 
concerning electoral change confirm the linearity of vote intention in elections, but 
some small events during the campaign can be responsible for larger changes. On the 
long-term, chaos renders predictions about politics impossible. As a result, one can say 
that electoral time should be recognized to be discontinuous, the amount of change 
found in a time-series should be understood to depend on the frequency of 
measurements, the importance of nonlinear change should be recognized, and electoral 
series should be expected to be always changing (Weisberg, 1998).  
 
The chaos theory can also be applied for political actors, and political parties in 
particular. In a work still in progress, Plaza i Font (2006) tackled the organizational 
change of the European Popular Party (EPP), paying special attention to the ideological 
evolution of the party. With the arrival of new member parties in 1991 because of many 
institutional and also internal reasons, the EPP completely changes his ideological 
realignments. So, despite of coming from a strict classical Christian democratic 
tradition, the present EPP amalgamates many different national parties with no 
ideological homogeneity, representing Christian democrats, and even liberal or 
conservative traditions. This phenomenon was firstly modelled as a “chaotic ideological 
system”. Hence it permitted to describe an “ideological trajectory” of the evolution 
within the EPP and, consequently, analysing the arrival of those new member parties to 
the EPP as a bifurcation point leading the system to states of minor ideological order 
(major disorder). 
 
12. Political Systems 
 
Finally, rather than focusing on a particular topic, organisation or public policy field, 
few authors studied political systems as a whole. A significant exception concerns the 
Arab world where the Gulf war was considered as having introduced chaos in the Arab 
political system (Ismael & Ismael, 1993). The political situation after the war was 
assessed as volatile and unpredictable and small changes or fluctuations could easily 
produce large and turbulent changes, driving Arab politics in unexpected directions. The 
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war destabilised this system and several bifurcations have been identified like the social 
world oscillating between traditional patterns of stratification and modern patterns of 
power, privilege and influence, or like the political world oscillating between an internal 
sphere where struggles of power are not soften by cultural norms and an external sphere 
where such struggles are bounded by cultural norms. As a result, the Arab state system 
was considered as a system with high sensitive dependence on initial conditions and 
where the trajectories of this system are no longer predictable. The turbulences that 
resulted from the war will increase but one cannot assess whether it would only be 
short-term turbulences or long-term chaos. 
 
The chaos theory also provided metaphors – in particular the dissipative structures – to 
observe the Belgian political system. Based on the Dutroux-case (a paedophile 
committing several crimes), Lippens (1998) stated that this case could be read as a 
attractor which was strangely attracted around empty signifiers, as a collector of the 
people’s discontent. During the investigation, the forces of order (as the police) that are 
supposed to be the guardians of the stability were considered as having generated chaos 
in the Belgian society, and more precisely in the political and societal system. In 
addition, the ‘spaghetti’ episode of the investigation was considered as close to the 
butterfly effect as some media talked about a Belgium “pre-revolutionary” climate as 
the results of these small events. Similarly, the whole Belgian political system has 
always been considered as quite ‘unstable’ over time (cabinet’s instability, 
fragmentation and bifurcation of the party system, electoral turnover, and internal 
ethno-linguistic conflict), showing an irregular pattern and being assessed as 
unpredictable. Dandoy (2000) used empirical data for these four political dimensions. 
Using the Fourier transform, the author observed that the governmental, partisan and 
electoral dimensions are all driven by the long-term perspective, probably explained by 
larger and sociological considerations. They allow little space for any attempt of short-
term prediction. However, as far as the ethno-linguistic dimension is concerned, the 
results show a continuous spectrum meaning that the system seems to be chaotic. The 
instability of the Belgian political system should therefore be apprehended in two-ways: 
as a long-term dynamic behaviour as far as cabinets, parties and elections are 
concerned, and as a chaotic behaviour as far as the ethno-linguistic conflict between 
Flemish and French-speakers is concerned. It is probably the conjunction of both 
behaviours that makes predictions about the future of the whole Belgian system and its 
survival quite limited.  
 
13. Conclusion 
 
Beyond the epistemological debate between order and disorder and the one about 
prediction and irreversibility, this paper intended to explore the new tracks opened by 
the so-called chaos theory in social science, and more particularly in political science. 
The chaos has been defined as a dynamic system showing a deterministic complex 
behaviour, irregular and non-periodic with random appearance but maintaining a latent 
order. Even if the path of the chaos is not leading to a whole new paradigm in social 
sciences, it still shows a large potential for useful reflexions and applications. 
  
Firstly, this theory has been mainly applied as a metaphor for description and analysis. 
The rhetoric and the semantic of the chaos brought with it a bunch of new concepts and 
terms particularly useful for the understanding of political phenomena, like bifurcation 
points, sensitivity to initial conditions, auto-similarity, oscillations, dissipative 
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structures or even entropy. This new vocabulary allows the researcher to develop his/her 
knowledge and explore new aspects of the observed social and political phenomenon.  
 
In addition and mainly applied in the fields of public policy and sociology of 
organisations, it introduced a more quantitative approach. The chaos theory delivers 
new tools and methods for the researcher that, based on longitudinal data, intends to 
analyse graphically the evolution of dynamic political systems. These graphic-based 
tools are quite diverse, going from the phase space attractors to the fractals and the 
spectral analysis and can provide useful complements to the more traditional scientific 
tools. More globally, the innovative aspects of the chaotic perspective show a promising 
scientific potential for analysing and describing the time-based evolution of public 
policies and political institutions, actors and processes like election cycles. 
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Graph 1: data for y = 0,99 and w = 2,14 
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Graph 2: data for y = 0,97 and w = 3,13 
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Graph 3: data for y = 0,99 and w = 3,895 
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Graph 4: Punctual attractor  
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Graph 5: Periodical attractor 
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Graph 6: Strange attractor 
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Graph 7: Spectrum of a constant system 

0,0 0,1 0,2 0,3 0,4 0,5

Frequency

-4,979E-2

1E0

2,718E0

De
ns

ity

Window: Tukey-Hamming (5)

Spectral Density by Frequency

 
 



 19 

Graph 8: Spectrum of a periodic system 
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Graph 9: Spectrum of a chaotic system 
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